
must see the bus be empty for two times the maximum
propagation time plus the minimum length of time
needed to detect a packet plus the minimum space
between packets. This makes an empty slot always cost
64 bytes. The third diagram shows a full slot, which
incurs the cost of sending a new minimum length packet
(35 bytes) plus its associated propagation delay and
minimum space, for a total cost of between 47 and 76
bytes.

The last diagram shows a collision slot. In this
diagram, B actually stands for a set of multiple senders.
One of the members of B detects the collision within one
propagation time plus the minimum space between
packets and then sends out a JAM signal. After the
collision is finished, there is another propagation delay to
the next sender which takes at most the maximum
propagation delay of the bus plus another minimum space
between the end of the JAM signal and the beginning of
the new packet, for a total of between 18 and 47 bytes.
These calculations assume that the slot is being used
between two packet sends. If multiple slots occur in a
row, then the extra minimum space and propagation
delay costs (shown in the first diagram) must be
amortized over these slots.

5.2 Basic algorithm

MONITORING RULES

Not Congested Mode
C: Go into congested mode
S, E: Remain in not congested mode

Congested Mode, Successful Send
S: Remove top bucket from queue

If this bucket was marked as DQPAIR (if so, it
will be from the high priority queue), then

Find the first bucket in the low priority queue
marked as DQPAIR and unmark it

Congested Mode, Ordering Slot
E: No change
H, L: Add a new bucket on the end of the appropriate

queue
If we were the sender for this event, then

Put our packet in this bucket
C: Add a new bucket on the end of each queue

Mark each bucket as DQPAIR
If we participated in this event, then

Put our packet in the new bucket with the
same priority as the packet

Congested Mode, Collision Period Slot
C: Remove the bucket from the front of the highest

priority, non-empty queue
Add two new buckets to the front of this queue
Mark the top bucket as TICP
If we participated in the collision, then

Randomly pick one of the top two buckets
and put our packet into it

E: If the top bucket of the highest priority non-empty
queue is marked as TICP, then

If we have a packet in the bucket immediately
following this TICP bucket
Remove our packet from this bucket
Randomly pick either our old bucket or the

TICP bucket and put our packet into it
Else if the top bucket is marked as DQPAIR (if

so, it is in the high priority queue), then
Find the first bucket in the low priority

queue marked as DQPAIR
Unmark it
Split it into two buckets
If we have a packet in this low priority

bucket, then
Randomly pick one of the two buckets
 to put our packet into

Figure 5.2: The FDDQ algorithm

TRANSMISSION RULES

Not Congested Mode
If we have a packet to send, then

Wait until the bus is free and attempt to send it
If a collision occurs, then

Stop transmission, but do not discard packet
Send a JAM signal, as per 802.3 rules

Congested Mode, Ordering Slot
If we have a packet to send that is not in a bucket, then

Send a minimum packet of 35 bytes, with the
data field containing our requested priority

If a collision occurs, then
Stop transmission, discard minimum length

packet
Send a JAM signal, as per 802.3 rules

Congested Mode, Collision Period Slot
If we have a packet to send that is in the top bucket in

the highest priority queue, then
Attempt to send it.
If a collision occurs, then

Stop transmission, but do not discard packet
Send a JAM signal, as per 802.3 rules

When in the congested mode, controllers place a
packet of theirs into a bucket on one of the queues by
participating in the first ordering slot that starts after the
arrival of that packet. If only one controller sends in an
ordering slot, then all controllers add a new bucket to the
end of the queue of the packet's priority, and that sender
places its packet in it. If more than one controller sends
in an ordering slot, a collision occurs and all of the
controllers add one new bucket to the end of each queue.
The senders that were involved in that collision then put
themselves into the new bucket in the queue with their
priority. A controller may have more than one packet in
the queues at a time, although it can only have one per
bucket. The number of packets that a controller may have
in the queues at a time should be limited by a higher level
protocol.

When a controller has a packet in the top bucket, it
waits until the network is empty and an ordering slot is
no in progress, and them tries to send this packet. Since a
bucket may have more than one packet in it, a collision
resolution scheme must be used to resolve the order of the
senders within a bucket. When a collision occurs, the
FDDQ algorithm divides the top bucket into two buckets
and each sender that was involved in the collision
randomly puts itself into one of the two buckets. In this
way, the number of senders in the top bucket is reduced
by an average of one half with each collision, although
some empty buckets may be created with this policy.

A bucket is removed after it is the top bucket and it is
detected to be empty. If it is empty when it becomes the
top bucket, then it will leave an empty event in a collision
resolution slot and be removed. If it contains a single
sender when it becomes the top bucket, then this sender
will successfully send its packet and the bucket will be
removed. When both queues are reduced to zero buckets,

the controllers all enter uncongested mode again, and stay
in this mode until the next collision occurs.

5.3: Optimizations

The basic protocol performs quite well with only two
integer variables required per controller. When multiple
senders collide and redistribute themselves into two
buckets, they may all choose the same bucket, in which
case an empty bucket is created. When this empty bucket
is processed, it will create an empty collision resolution
slot. If this empty bucket is the higher priority of the two
buckets, the occurrence of the empty slot indicates that
the lower priority bucket has at least two packets in it.
The best thing to do in this case is to divide the lower
priority bucket into two buckets, and have the members of
this bucket randomly pick one of the two new buckets.

This optimization requires keeping track of two flags
per bucket, one for each type of slot that can create this
case. If two buckets are created due to a collision in a
ordering slot, they are both marked as members of a Dual
Queue Pair (DQPAIR). When the top bucket in the high
priority queue is removed and was marked as DQPAIR,
the top bucket in the low priority queue that is marked as
DQPAIR is unmarked. This keeps the pairs associated
together, so that the top DQPAIR bucket in the high
priority queue is associated with the top DQPAIR bucket
in the low priority queue. If this unmarking is due to an
empty bucket, then the low priority DQPAIR bucket is
split into two.

If two buckets are created due to a collision in a
collision resolution slot, the top one is marked as Top In
Collision Pair (TICP). Both packets do not need to be
marked in this case because if the top bucket of the pair is
empty (the optimized case) then the lower bucket must

Note: Not drawn to scale
(*): Followed by empty collision period

[T]: Top In Collision Pair

A

S(A) C(B,C,

B C D

Uncongested
Mode

E S(C) H(A)

A

Collision
Period

Ordering
Slot (*)

S(A) E C(B,D)

(Arrivals)C

Ordering
Slot

E

Uncongested
Mode

A: Video Host B, C, D: Data Hosts

ADistributed
Queues

[D]

C

B,D

B,DB,C,D B,D B,D B,D

[D]: Dual Queue Pair

S(D) E S(B) S(C) E

Collision
Period

Ordering
Slot (*)

[T]

B,D

D

B

B B
[D]

[T]

D)

always immediately follow it in the queue. So when an
empty slot occurs as the result of a bucket that is marked
as TICP, the next bucket in that queue is split into two.

5.4 FDDQ rules

Figure 5.2 lists the rules of the FDDQ algorithm.
These rules assume that FDDQ or some other protocol
has already split up the actual signals from the bus into a
series of events. Each returned event is either a full
packet send from a single controller (S), a slot containing
a collision between two or more controllers (C), an
ordering slot filled with one sender (H or L) or an empty
slot (E). When the net is in uncongested mode, any event
can be returned, with C events putting the controllers into
congested mode. Collision period slots can be of type E
or C. Ordering slots can be of type E, C, H, or L.

A sample set of these events is shown in figure 5.3,
along with the resulting queues. The three classes of
events (ordering slots, collision period slots, and
successful sends) are demarcated by the successful sends,
marked in bold. Immediately succeeding each send is an
ordering slot. The events, if any, immediately after the
ordering slot and before the next send are collision period
slots.

5.5 Implementation of FDDQ

As shown by the previous set of rules, FDDQ is very
simple and should execute very quickly. The amount of
state needed is minimal. Each controller needs to know
the size of the queue (if any), the position in the queue of
its bucket (if any), and a list of which buckets are marked
as TICP or DQPAIR. The first two pieces of information
are just integers, and while the last piece requires a more
complicated data structure, this can be removed if
necessary, with only a mild average packet latency
penalty. The maximum utilization numbers are not
affected by these optimizations. Because many of the
current Ethernet chipsets allow the collision detection
signal to be input from an external source, FDDQ should
be implementable in firmware in a single microcontroller
or other chip added to an Ethernet board.

5.6 Analysis of FDDQ

The FDDQ algorithm guarantees FIFO sending
behavior between buckets. There is one ordering slot per
successful send, so the number of senders in one bucket is
limited to the number that arrive between the ends of two
consecutive successful sends. This is equal to the time it
takes to send a maximum length packet (1.2 ms) plus the
maximum length of the collision period between packets,
which is easily bounded by 0.5 ms. This is equal to
slightly more than 8 collision slots, and so roughly 256
senders would have to send at the same time to cause this
many collisions in a row. So even though the order of
packets sent within a bucket is arbitrary, the FDQ
algorithm guarantees FCFS behavior of packets that
arrive at least 1.7 ms apart.

A very nice feature of FDDQ is that it actually behaves
better as the offered load increases, as long as the number
of senders and the number of packets they can offer at
once stays constant. If the senders offer more than 100%
load, and back up, FDDQ turns into a round robin
scheduler. As one packet is successfully sent, if this
controller is backed up, it will immediately request a spot
in the next ordering slot. Since all of the other senders
are in the queues, it will get into the bucket by itself. This
is the ideal case for FDDQ, where exactly one slot is spent
per packet sent. Because of this, FDDQ is stable for a
constant number of senders.

6. Comparison of FDDQ with CSMA/CD

In this section, we use simulations to compare the
utilization, average delay, and standard deviation of delay
between CSMA/CD and FDDQ. We show that, for the
tested loads, CSMA/CD only achieves higher utilizations
than FDDQ at offered loads greater than 90%. Because
the PSE makes this range of operation non-viable for

Of f ere d Lo ad (%)

U
til

iz
at

io
n

(%
)

60
65
70
75
80
85
90
95

60 80 100 120 140 160

FDDQ

CSMA /CD

Figure 6.1: Utilization for 20, 40, and 60 Data Hosts

Of f e red Load (%)

U
til

iz
at

io
n

(%
)

70
75
80
85

90
95

100

60 80 100 120 140 160

CSMA /CD

FDDQ

Figure 6.2: Utilization for Combined Video and Data
Sources

CSMA/CD, FDDQ provides utilization at least as high as
CSMA/CD for all practical loads. The comparison of
average delay mirrors that of utilization. We show that
the standard deviation of delay for FDDQ is much smaller
than that of CSMA/CD, reflecting the fact that FDDQ
completely eliminates the PSE and provides two priority
FCFS access.

6.1 Utilization

Figures 6.1 and 6.2 show the utilization of CSMA/CD
and FDDQ for the tested data loads and combined data
and video loads. The combined loads consisted of
between 1 and 4 video streams with data traffic from 40
hosts added on incrementally. For both of these figures,
FDDQ is almost identical to CSMA/CD up to an offered
load of around 80%. From 80% to 90%, FDDQ has a
higher utilization than CSMA/CD, probably due to the
numerous starvations that occur in this range. Above
90%, CSMA/CD shows a utilization up to 5% higher
than FDDQ for data packets, and for some combined
loads. However, at this range, CSMA/CD is experiencing
2% to 15% starvations, depending on the exact offered
load and the type of load. This level of starvations is
unacceptable for most applications, so the extra
utilization is not usable in practice. Note that for the

loads with two or more video streams, FDDQ actually has
higher utilization, but this is because it is giving prioirity
to the longer video packets.

6.2 Average packet latency

Figures 6.3 and 6.4 show the average packet latency
for CSMA/CD compared with FDDQ. Figure 6.3 shows
the average latency for 20, 40, and 60 data hosts. In this
case, FDDQ outperforms CSMA/CD from 60% offered
load to 80% offered load, and is worse at levels above
85%. Figure 6.4 shows the average delay suffered by the
video packets in the combined loads. Because of its two-
priority FCFS access, FDDQ provides lower average
latency to the video packets than CSMA/CD does.

6.3 Standard deviation

The main point of FDDQ is to provide dual-priority
FCFS access to the bus This greatly reduces the standard
deviation of packet latency, as shown by figures 6.5 and
6.6. The deviation that does exist for FDDQ in these
graphs is primarily from the burstiness of the sources.

Although we do not provide graphs for it, we note that
the PSE is completely eliminated by FDDQ. For the case

O f f e red Load (%)

Av
er

ag
e

La
te

nc
y

(m
s)

0
5

10
15
20
25
30
35
40

40 60 80 100 120 140

FDDQ

CSMA /CD 60

40

20

Figure 6.3 Average Latency for 20, 40, and 60 Data
Hosts

Of f e r ed L oa d (%)

Av
er

ag
e

La
te

nc
y

(m
s)

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

4 0 9 0 1 4 0 1 9 0

CSMA /CD

FDDQ

Figure 6.3 Average Latency of Video Packets (Part
of Combined Load)

Of f ered Load (%)

St
d.

 D
ev

ia
tio

n
(m

s)

0

20

40

60

80

40 80 120 160

60
40

20

CSMA /CD

FDDQ

Figure 6.5 Standard Deviation of Latency for 20, 40,
and 60 Data Hosts

O f f e r e d L o a d (%)

St
d.

 D
ev

ia
tio

n
(m

s)
0

2 0

4 0

6 0

8 0

1 0 0

4 0 8 0 1 2 0 1 6 0

CS M A /CD

FDDQ

Figure 6.6: Standard Deviation of Video Packet
Latency (Part of Combined Load)

of 60 data sources and an offered load of 149% there were
0.06% of the packets which experienced delay of at least
50 ms, which is reasonable since the average delay for
this case was 35.5 ms. This was the only tested case that
had any packets experience a delay of at least 50 ms, and
there was not a single packet starvation in all of the tests.

7. Conclusions and future work

We have shown that Ethernets with CSMA/CD
experience the packet starvation effect (PSE) which
causes some packets to experience very high delays at
high offered loads. This is the primary reason that the
standard deviation of packet latency is two to five times
the mean for these loads. At high offered loads, the PSE
causes real-time traffic to suffer unreasonable delays and
loss rates, and limits the usable utilization of a CSMA/CD
Ethernet. We quantified the point at where the PSE
becomes significant, and concluded that 60% to 70% is
probably a realistic offered load limit for current
Ethernets unless only one or two sources are involved.

While the simulations in this paper were based on the
10Base5 version of the IEEE 802.3 specification, they
will have at least limited applicability to the new 100
Mbps CSMA/CD standards being proposed by the 802.3
committee. There would have been three main
differences to the simulations if the new 100 Mbps
standards had been used instead of the 10 Mbps 10Base5
standard. First, all of the latency measurements would
have been 1/10th what they were. This will decrease the
cost of packet starvations when compared to human
reaction time and video frame rates. Second, the traffic
loads selected will not have as much direct applicability to
these new LANs as to 10Base5 LANs, and so might need
to be modified. Finally, the hub-based topology of these
new LANs may produce different collision effects and
costs than the straight-line bus topology used. Despite
these differences, we expect the PSE to be a significant
problem for real time traffic in these new networks. As
real time traffic is a primary driving force behind the new
standards, we feel that this is of high importance.

To solve these problems, we proposed the Fair Dual
Distributed Queue algorithm. This algorithm provides
two priority FCFS scheduling of packets with a
scheduling resolution bounded by the maximum time it
takes to send a single packet. It provides utilization equal
or better than that of CSMA/CD in all but the highest
loads, which are impractical for CSMA/CD to sustain
because of the PSE. It has comparable average latency to
CSMA/CD and eliminates the unfairness of CSMA/CD.
FDDQ is stable for a constant number of senders and
gracefully handles even extremely high offered loads.

This is a very powerful tool, for with the use of
adaptive stream protocols (such as TCP/IP), a bus that
utilizes FDDQ can be used at very close to its full
capacity. Senders can set up audio and video streams that
push the network close to 100% capacity, and they will
still see low jitter. When bursty datagram traffic arrives
at the network, the instantaneous offered load may exceed
100% for a short while, but this will not affect the real
time traffic, and the data traffic will adjust itself so that it
does not exceed the capacity of the bus.

Planned future work involves further simulation of
FDDQ to quantify its performance in the face of noise on
the line or controller faults. Work in progress has shown
that FDDQ can provide very tight statistical guarantees
on maximum packet latency when used in conjunction
with admission control schemes such as the Tenet
scheme[6]. Implementation of prototype 10 Mbps FDDQ
Ethernet controllers is underway, with 100 Mbps
prototypes eventually planned.

References

[1] Barnett, L. “Netsim User’s Manual”, University of
Richmond Department of Math and Computer Science
Technical Report TR-92-01.

[2] Boggs, D.; Mogul, J.; Kent, C. “Measured Capacity of an
Ethernet: Myths and Reality”, SIGCOMM, 1988.

[3] Bux, W. "Local-Area Subnetworks: A Performance
Comparison", IEEE Transactions on Communications. 29(10):
1465-1473, October 1981.

[4] Capetanakis, J. "Tree Algorithms for Packet Broadcast
Channels", IEEE Transactions on Information Theory. 25(5):
505-515, September 1979.

[5] Coyle, J.; Liu, B. "Finite Population CSMA/CD
Networks." IEEE Transactions on Communications. 31(11):
1247-1251, January 1985.

[6] Ferrari, D. "Real-time Communication in an
Internetwork", Journal of High Speed Networks. 1(1):79-103,
1992.

[7] Gallager, R. "Conflict Resolution in Random Access
Broadcast Networks", in Proc. AFOSR Workship on
Communication Theory Applications. Provincetown, MA.,
Sept. 1978.

[8] Gusella, R. “A measurement study of diskless
workstation traffic on an Ethernet”, IEEE `Transactions on
Communications, Sept. 1990.

[9] Huang, J.; Berger, T. "Delay Analysis of Interval-
Searching Contention Resolution Algorithms", IEEE
Transactions on Information Theory. 31(2): 264-273, March
1985.

[10] Jacobson, V. "Congestion Avoidance and Control."
Proceedings of ACM SIGCOMM '88 Symposium. Sept. 1988,
314-329.

[11] Jain, R.; Routhier, S. “Packet Trains — Measurements
and a New Model for Computer Network Traffic”, IEEE
Journal on Communications, 1986.

[12] Leland, W. E.; Taqqu, M. “On the Self-Similar Nature
of Ethernet Traffic”, SIGCOMM ‘93, 1993.

[13] Massey, J. "Collision Resolution Algorithm and
Random Access Communications", in Multiuser
Communication Sytems, G. Longo Ed. New York: Springer-
Verlag, 1981, 73-137.

[14] Melamed, B.; Sengupta, B. “TES-Based Traffic
Modeling for Performance Evaluation of Integrated Networks”,
IEEE INFOCOM, 1992.

[15] Metcalfe, R.; Boggs, D. “Ethernet: Distributed Packet
Switching for Local Computer Networks”, Communications of
the ACM, July, 1976.

[16] Metcalfe, R. “Ethernet versus Godzilla”,
Communication Week, 1984.

[17] Nichols, K.M. “Network performance of packet video
on a local area network”, Eleventh Annual International
Phoenix Conference on Computers and Communications, 1992.

[18] Raychaudhuri, D. "Announced Retransmission Random
Access Protocols", IEEE Transactions on Communications.
33(11): 1183-1190, November 1985.

[19] Schoch, J.; Hupp, J. “Measured Performance of an
Ethernet Local Network”, Communications of the ACM,
December, 1980.

[20] Smith, W.R.; Kain, R.Y. “Ethernet performance under
actual and simulated loads”, 16th Conference on Local
Computer Networks, 1991.

 [21] Tsybakov, B.; Mikhailov, V. "Random Multiple Packet
Access: Part-and-try Algorithm", Problems of Information
Transmission. 16(4): 305-317, Oct.-Dec. 1980.

[22] Xu, W.; Campbell, G. "A Distributed Queueing
Random Access Protocol For a Broadcast Channel", SIGCOMM
1993. September, 1993.

[23] Yegenoglu, F.; Jabbari, B. “Modeling of Motion
Classified VBR Video Codecs”, IEEE INFOCOM, 1992.

